Math 284
Cuyamaca College

Name:
Instructor: Dan Curtis

Practice Final Exam

You do not need to show your work when you row reduce a matrix. You may use the rref() command in your calculator.

1. a) Solve the system of equations. Write your answer in vector notation.

$$
\begin{array}{r}
3 x_{2}-6 x_{3}+6 x_{4}+4 x_{5}=-5 \\
3 x_{1}-7 x_{2}+8 x_{3}-5 x_{4}+8 x_{5}=9 \\
3 x_{1}-9 x_{2}+12 x_{3}-9 x_{4}+6 x_{5}=15
\end{array}
$$

b) Determine whether the solution set is a subspace of \mathbb{R}^{5}.
2. Let $A=\left[\begin{array}{ll}3 & -2 \\ 3 & -4\end{array}\right]$.
a) Find the characteristic polynomial of A.
b) Find the eigenvalues of A.
c) Find the eigenvector for each eigenvalue of A.
d) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
e) Use your answer from part d), find the general form for A^{k}.
3. Methane $\left(\mathrm{CH}_{4}\right)$ burns in oxygen $\left(\mathrm{O}_{2}\right)$ to produce carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Balance the chemical equation, using the smallest whole number solution:

$$
__{2} \mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

4. The matrix below is an augmented matrix from a system of equations with 3 variables and 4 equations. Find the values of h for which the system is consistent.
$A=\left[\begin{array}{cccc}2 & 1 & 1 & -2 \\ -4 & -4 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 2 & -3 & h\end{array}\right]$
5. Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 7\end{array}\right]$.
a) Compute $(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}$
b) Find $\|\mathbf{u}\|$
c) Find a unit vector in the direction of \mathbf{u}.
d) Find the angle between \mathbf{u} and \mathbf{v}.
e) Find the orthogonal projection of \mathbf{v} onto \mathbf{u}.
6. Let $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -2 & 0 & 0 \\ -3 & 3 & 4\end{array}\right], B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 0 & 0 & 1 \\ 2 & -2 & 1\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]$.
a) Find $A \mathbf{x}$.
b) Find $A B$.
c) Find $(A+B) \mathbf{x}$.
7. Determine whether each of the following is a subspace of \mathbb{R}^{3}. If it is, find a basis.
a) $W=\left[\begin{array}{c}2 a-b \\ -6 a+3 b \\ 4 b-2 a\end{array}\right]$
b) $H=\left[\begin{array}{c}a-b \\ a+b \\ 2 a+2\end{array}\right]$.
8. Let $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
a) Find the coordinates of the vector $\mathbf{x}=\left[\begin{array}{c}7 \\ -4\end{array}\right]$.
b) Find the vector \mathbf{x} with coordinates $[x]_{\mathscr{B}}=\left[\begin{array}{l}5 \\ 5\end{array}\right]$.
9. a) Find a basis for the span of the polynomials.
$\left\{1-4 x^{2}, 3 x+4 x^{2}, 2 x, 3-4 x+2 x^{2}\right\}$
b) Find the coordinates of the polynomial in the basis found in part a)

$$
p(x)=5 x^{2}+2 x-3
$$

10. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}a+b \\ c\end{array}\right]$.
a) Find the matrix A that corresponds to the transformation.
b) Find a basis for $\operatorname{Nul}(\mathrm{A})$.
c) Find a basis for $\operatorname{Col}(\mathrm{A})$.
